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FIGURE 1 – Visual analysis of the Earthquake ensemble with Merge Tree Principal Geodesic Analysis (MT-PGA, (a) : one
member per ground-truth class). Our framework computes a coordinate system (b) for the Wasserstein metric space of merge
trees B by adjusting geodesic axes (blue and black , (b)) to optimize a fitting energy. This enables the adaptation to merge
trees of typical applications of Principal Component Analysis, such as data reduction, where the input trees are accurately
reconstructed ((c), right), by simply storing their MT-PGA coordinates, or dimensionality reduction. MT-PGA enables the
computation of a Principal Geodesic Surface (b), which complements its planar layout (g) by better conveying visually the
curved nature of B. MT-PGA supports the efficient reconstruction of user-defined locations, for the interactive exploration of
B : the reconstruction of the purple curve (f) enables the navigation from the trees of the first cluster (dark red, (b)) to the
second (orange, (b)) and third (pink, (b)) clusters. MT-PGA also introduces Persistence Correlation Views (d) which enable
the visual identification of the features which are the most responsible for the variability in the ensemble (high correlation,
near the disk boundary, (d)) as well as their direct inspection in the data (matching colors (a)).

Abstract

This paper presents a computational framework for the
Principal Geodesic Analysis of merge trees (MT-PGA), a
novel adaptation of the celebrated Principal Component
Analysis (PCA) framework [1] to the Wasserstein metric
space of merge trees [2]. We formulate MT-PGA compu-
tation as a constrained optimization problem, aiming at
adjusting a basis of orthogonal geodesic axes, while mi-
nimizing a fitting energy. We introduce an efficient, itera-
tive algorithm which exploits shared-memory parallelism,
as well as an analytic expression of the fitting energy gra-
dient, to ensure fast iterations. Our approach also trivially
extends to extremum persistence diagrams. Extensive expe-
riments on public ensembles demonstrate the efficiency of
our approach – with MT-PGA computations in the orders of
minutes for the largest examples. We show the utility of our
contributions by extending to merge trees two typical PCA
applications. First, we apply MT-PGA to data reduction

and reliably compress merge trees by concisely represen-
ting them by their first coordinates in the MT-PGA basis.
Second, we present a dimensionality reduction framework
exploiting the first two directions of the MT-PGA basis to
generate two-dimensional layouts of the ensemble. We aug-
ment these layouts with persistence correlation views, en-
abling global and local visual inspections of the feature
variability in the ensemble. In both applications, quanti-
tative experiments assess the relevance of our framework.
Finally, we provide a C++ implementation that can be used
to reproduce our results.

Index Terms

Topological data analysis, ensemble data, merge trees, per-
sistence diagrams.



1 Introduction
Wether they are acquired or simulated, modern datasets
are constantly gaining in detail and complexity, given the
continuous improvement of acquisition devices or compu-
ting resources. This geometrical complexity is a difficulty
for interactive data analysis and interpretation. This obser-
vation motivates the development of concise yet informa-
tive data representations, capable of encoding the main fea-
tures of interest and visually representing them to the users.
In that regard, Topological Data Analysis (TDA) [3] has
demonstrated its ability to generically, robustly and effi-
ciently reveal implicit structural patterns hidden in com-
plex datasets.
Among the feature representations studied in TDA, the
merge tree [4], which describes the global structure of the
connected components of the sub-level sets of scalar data-
sets (Fig. 2), is a popular instance in the visualization com-
munity [5, 6, 7].

FIGURE 2 – Critical points (spheres, larger radius :
maxima), persistence diagram (left inset), merge tree (cen-
ter inset) and branch decomposition tree (right inset) of
a clean (a) and noisy (b) scalar field. In both cases, four
main hills are clearly represented with salient features in
the persistence diagram and the merge tree. Branches with
low persistence (less than 10% of the function range) are
shown with small white arcs.

In many applications, on top of the increasing geometrical
data complexity, an additional challenge emerges, related
to ensemble datasets. These describe a phenomenon not
only with a single dataset, but with a collection of data-
sets, called ensemble members, in order to characterize the
variability of the phenomenon under study.
In principle, a topological representation (like the merge
tree) can be computed for each ensemble member. While
this strategy has several practical advantages (direct re-
presentations of the features of interest, reduced memory
footprint), it shifts the analysis problem from an ensemble
of datasets to an ensemble of merge trees. Then, a major
challenge consists in designing statistical tools for such an
ensemble of topological descriptors, to support its interac-
tive analysis and interpretation. In this direction, a series of
recent works focused on the notion of average topological
descriptor [8, 9, 10, 11, 2], with applications to ensemble
summarization and clustering. However, while such ave-
rages synthesize a topological descriptor which is well re-
presentative of the ensemble, they do not describe the to-
pological variability of the ensemble.

2 Contributions
This paper addresses this issue and goes beyond simple
averages by adapting the celebrated framework of Prin-
cipal Component Analysis (PCA) [1] to ensembles of
merge trees. For that, we introduce the novel notion of
“Merge-Tree Principal Geodesic Analysis” (MT-PGA),
which captures the most informative geodesics (i.e. ana-
logs of straight lines on the abstract space of merge trees)
given the input ensemble, hence facilitating variability ana-
lysis and visualization.
In particular, we formalize the computation of an orthogo-
nal basis of principal geodesics in the Wasserstein metric
space of merge trees [2] as a constrained optimization pro-
blem, inspired by previous work on the optimal transport
of histograms [12, 13], which we extend and specialize to
merge trees. We introduce an efficient iterative algorithm,
which exploits an analytic expression of the energy gra-
dient to ensure fast iterations.
Moreover, we document accelerations with shared-
memory parallelism. Extensive experiments indicate that
our algorithm produces bases of acceptable reconstruction
quality within minutes, for real-life ensembles extracted
from public benchmarks. Since our framework is based on
the Wasserstein distance between merge trees [2], which
generalizes the Wasserstein distance between persistence
diagrams [8], it trivially extends to persistence diagrams
by simply adjusting a parameter.

3 Applications
We illustrate the utility of our contribution in two appli-
cations. First, we show that the principal geodesic bases
computed by our algorithm can result in an important com-
pression of ensembles of merge trees, while still enabling
a successful post-processing for typical visualization tasks
such as feature tracking or ensemble clustering. Second, we
present an extended application of our work to dimensiona-
lity reduction, for the visual inspection of the ensemble va-
riability via two-dimensional embeddings, where we show
that the views generated by our approach (e.g. the Principal
Geodesic Surface and the Persistence Correlation View)
preserve well the intrinsic metric between merge trees, as
well as the global structure of the input ensembles, while
enabling the visual inspection of the individual features
which are the most responsible for the variability in the
ensemble.
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