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Abstract

Image-based rendering (IBR)  technique generates novel
views  by  utilizing  input  images  captured  from  various
viewpoints  to  create  an  immersive  video  experience.
However,  current  learning-based  IBR  methods  have
limitations as they only work at the still image level, and
they  do  not  maintain  consistency  between  consecutive
frames,  leading  to  temporal  noise.  To  address  this,  we
propose an intra-only framework that identifies parts of
input  images  causing  temporal  artifacts in  synthesized
views. Our method produces better and more stable novel
views for immersive video transmission. We conclude that
our  framework  is  capable  of  detecting  and  correcting
spatial features in still image level that  produce artifacts
in the temporal dimension.
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1 Introduction
Image-Based  Rendering  is  a  technique  that  involves
synthesizing novel views of a scene from a set of input
images.  It  is  widely  used  in  computer  graphics  and
computer vision applications, such as virtual reality, video
compression, and autonomous driving. In  IBR methods,
the source  views are  usually  warped,  resampled,  and/or
blended  to  obtain  target  viewpoints,  which  allows  for
high-resolution  rendering.  However,  these  methods
typically  require  dense  input  views  or  explicit  proxy
geometry, making it challenging to estimate high-quality
views  without  resulting  in  rendering  artifacts.  Earlier
methods used dense sampling [2] or proxy geometry [3] to
generate  novel  views.  More  recent  techniques  have
introduced  better  modeling  of  scene  structure  [4],  and
learning-based methods have shown promising results.
  Techniques  that  combine  novel  representations  with
differentiable rendering have produced high-quality novel
views, with neural  radiance fields (NeRF) [5] being the
prominent  one.  However,  NeRF  requires  per-scene
optimization  and  overfitting,  making  it  impractical  for
immersive video transmission. Additionally, the network
parameters must be transmitted for each time instant of the
video, which is not feasible. A new learning-based method
called IBRNet [6] has been introduced, which combines

ideas  from IBR and NeRF.  Unlike  NeRF,  IBRNet  is  a
pure  processor  and  does  not  require  per-scene
optimization.  IBRNet  is  a  general  synthesizer  that  can
work  with  any  new  content.  The  method  involves
selecting neighboring views of the target view, extracting
dense  features  from  each  neighboring  view,  predicting
volume densities and colors at  continuous 5D locations,
and  compositing  the  colors  and  densities  along  each
camera ray to produce the target image. During training,
the color is rendered along each camera ray, and the mean
squared error is minimized between the ground-truth pixel
color and the rendered pixel color. As IBRNet is a pixel-
by-pixel  rendering  and  produces  state-of-the-art  results,
we are using it to synthesize novel views for immersive
video transmission.
  Despite  being  a  cutting-edge  rendering  technique,
IBRNet has three main drawbacks. Firstly, it struggles to
generate  high-quality  new  views  based  on  a  limited
number  of  input  views.  Secondly,  it  mainly  deals  with
static images that do not have any moving objects in the
scene.  Thirdly,  it  suffers  from  intra-frame  processing,
meaning  that  views  at  a  given  time  instance  are  only
synthesized from other views at the same time, resulting
in visual artifacts when displayed as a video. To solve this
issue, we propose an intra-framework for IBRNet, which
generates  temporally  consistent  new  views  while  still
processing the views at an intra-frame level. The paper is
structured  as  follows:  Section  2  outlines  our  proposed
intra-framework,  Section  3 presents  the  experimental
results, and Section 4 concludes the paper.

2 Proposed Method
In  order  to  enhance  the  temporal  consistency  between
successive  frames,  we  limit  the  fine-tuning  process  of
IBRNet to incorporate image pixels exclusively from the
temporal  artifacts  area  of  the  image.  To recognize  and
isolate  these  pixels,  we  propose a  temporal  artifacts
extraction  technique,  which  can  be  performed  in  four
stages.  Figure  depicting  the  production  of  a  temporal
guidance  map can  be seen  in  [1].  The first  step of  our
method  involves  obtaining  a  motion  mask  by  taking  a
pixel-by-pixel  difference between the  t,  t+1 consecutive
frames of  an original  view.  We use Algorithm 1 to  set
pixel values to white (255, 255, 255) or black (0,  0,  0)
depending on whether  their  absolute difference  value  is



above a certain threshold (Th1). In the motion mask, the
black  pixels  represent  pixels  with  negligible  motion,
which  are  usually synthesized  with  more  temporal
stability.  In  the  second  step,  we synthesize  the  original
view at  time  t from neighbouring views using IBRNet,
resulting  in  a  synthesized  view  with  both  static  and
temporal  artifacts.  In  the  third  step,  we  add  the  mask
obtained  in  step 1  to  both the  original  and  synthesized
view, which allows us to remove pixels affected by the
original motion. Finally, in the fourth step, we extract only
the region of temporal artifacts. We use Algorithm 2 to set
pixel values to white if the distance between the original
and synthesized value of a pixel is smaller than a certain
threshold (Th2).  Table 1 shows the values of thresholds
used for each sequence. They were chosen experimentally
to  ensure  that  the  number  of  active  motion  pixels  is
similar to the number of pixels affected by temporal noise
(typically between 15 to 30 percent of the entire image,
but this may vary between sequences).

The result of the proposed method generates a temporal
guidance  map  containing  only  temporally  incoherent
pixels. Each original  image is associated with one map,
which, along with camera parameters,  is fed to IBRNet.
During fine-tuning, each pixel  of the temporal  guidance
map  is  read,  and  if  a  white  pixel  is  found,  its
corresponding pixel in the original view is simply skipped.

3 Experimental Results
As shown in Table  1,  our  experiments  were  conducted
using the MPEG-I test sequences, which consist of both
real-world and computer-generated scenes captured using
a sparse camera setup. To evaluate the proposed method's
effectiveness  in  immersive  video  transmission,  we
conducted experiments with three use cases. In Use Case
1  (UC1),  fine-tuning  was  done  at  the  server-side,

assuming lossless transmission of parameters to the client.
Use Case 2 (UC2) involved per-scene fine-tuning at the
client-side without the need to transmit  any parameters,
but  with  added  complexity.  Use  Case  3  (UC3)  was  a
universal  solution  that  fine-tuned  the  network  on  five
different  sequences  and  then  tested  it  with  a  new
sequence.  This  scenario  was  the  most  realistic,  as  the
resulting  synthesizer  was  data-independent.  The
parameters  were  retrained  once  and  for  all  using  the
temporal guidance maps, making it a classical IBRNet that
could  be  used  without  the  need  for  further  parameter
transmission.

   Table 2 and Table 3 compare the quality of synthesized
views for different use cases using various measures, with
the anchor column indicating views synthesized using a
model fine-tuned on other MPEG-I test sequences. Figure
1 shows that our novel views are consistently better than
the  anchor  views,  with  more  details  from  the  original
views. Table 2 evaluates MSE only on active pixels of the
temporal guidance map to check for local improvement,
where UC1 has better quality views than all use cases in
every sequence since fine-tuning was on the same frames
as inference. UC2 also showed improvement, while UC3
performed better  even when fine-tuning was done on all
sequences  except  the  evaluated  one.  IBRNet  identified
specific spatial features producing temporal artifacts and
improved performance,  allowing it  to be deployed once
without parameter transmission. 
  Table 3 shows that VMAF, MS-SSIM, and PSNR were
calculated  on  full  images  to  evaluate  if  the  fine-tuning
impacts the rest of the synthesized view. UC1 and UC2
showed an  increase  in  quality,  but  the  most  significant
improvement  was  in  UC3,  where  fine-tuning  using
temporal guidance maps improved synthesis, even in the
most general case of offline fine-tuning. This suggests that
the fine-tuned IBRNet  can be deployed similarly to  the
anchor version.

4 Conclusion
This  paper  presents  an  intra-framework  approach  to
enhance  the  temporal  consistency  in  IBRNet  for
immersive  video  transmission.  The  proposed  method
requires  no  changes  to  the  network  architecture  and  is
easy  to  implement.  The  experiments  show  that  the
technique significantly improves temporal stability in all
use cases, even in the general case of offline fine-tuning.
In  future  work,  the  authors  plan  to  improve  temporal
stability by incorporating motion information as an input
to the synthesis network.



Appendix

This paper has been accepted and presented at  the 10th
European  Workshop  on  Visual  Information  Processing
held on 11th-14th September 2022, in Lisbon, Portugal.
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