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Abstract
In this paper, we address the image compression pro-
blem and introduce the Swin Non-Positional Encoding
(SwinNPE) transformer. SwinNPE improves the efficiency
of the SwinT transformer while reducing the number of mo-
del parameters. We generalize the Swin cell and propose
the Swin convolutional block, which can better handle the
local correlation between image patches. Additionally, the
Swin convolutional block can capture the local context bet-
ween tokens without relying on positional encoding, redu-
cing the model complexity. Preliminary results show that
SwinNPE outperforms state-of-the-art CNN-based archi-
tectures in terms of the trade-off between bit-rate and dis-
tortion, achieving results comparable to SwinT with 16%
less computational complexity on the Kodak dataset.
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1 Introduction
Transform coding is a widely used approach for image
compression and forms the basis for many popular coding
standards, such as JPEG. Codecs based on transform co-
ding typically comprise three components for lossy com-
pression : transform, quantization, and entropy coding.
These components have all been improved using deep neu-
ral networks through end-to-end training, as demonstrated
by various works [1, 2, 3, 4, 5, 6].
As one of the first works, the authors of [1] proposed a
CNN-based two-level hierarchical variational autoencoder
with hyper-prior as the entropy model. This architecture
consists of two pairs of encoders/decoders, one for the ge-
nerative model and another for the hyper-prior model.
Recently, transformers [7] have had great success in the
computer vision area including neural image compression.
The authors of [8] incorporated the attention mechanism
into the image compression framework by introducing self-
attention in the hyper-prior model. The more sophisticated
Swin block [9] is also used in [10] in both the generative
and the hyper-prior model to adopt shift window-based at-
tention to restrict the attention in local windows. Indeed,
with the attention mechanism that can better handle global
context compared to convolutional neural networks, trans-

formers have the ability to adapt the receptive field depen-
ding on the task conversely to CNNs where the kernel size
is fixed. This better understanding of global information al-
lows for capturing long-range dependencies in image com-
pression applications.
Positional encoding is a vital component of transformers.
The original ViT transformer [7] breaks down images into
non-overlapping series of patches mapping each patch to
a token. The standard transformer layers are then used to
read the whole sequence of tokens at once. The positional
encoding, therefore, plays a crucial role to maintain the se-
quence order, and different variations are proposed for bet-
ter modeling the positional information of the sequence and
maintaining the local context [11, 12, 13]. In the context
of image compression, the benefits of positional encoding
have been demonstrated in terms of Rate-Distortion (RD)
performance in works such as [8, 10]. In particular, the au-
thors of [8] have shown that a 2D diamond-shaped relative
position encoding is useful and has particular advantages.
Despite its many advantages, using positional encoding in
transformers can increase the dimensionality of embed-
dings, leading to higher computational costs during trai-
ning and limiting the flexibility of the models. Recently, the
authors of [14] demonstrated that the positional encoding
can be abandoned in the attention module for image classi-
fication without any drop in performance. This was achie-
ved by introducing convolution in the tokenization process
of patches and in the self-attention block to maintain lo-
cal spatial information. It is claimed that this combination
of convolution and the attention mechanism benefits from
both the advantages of convolutional neural networks and
transformers.
In this paper, we present a new image compression frame-
work called SwinNPE. It is based on our proposed convo-
lutional Swin block which combines patch convolution and
shift window-based attention in Swin without positional
encoding. We believe that this framework can better cap-
ture spatial contextual information. Our preliminary expe-
riments show that SwinNPE achieves comparable results to
the SwinT architecture [10], without the need for positional
encoding and with fewer parameters.

2 Proposed framework
The proposed SwinNPE uses the same architecture as
in [10], which is shown in Figure 1. Specifically, the in-



put image x is first encoded by the generative encoder
y = ga(x), and the hyper-latent z = ha(y) is obtai-
ned. The quantized version of the hyper-latent ẑ is mode-
led and entropy-coded with a learned factorized prior to
passe through hs(ẑ) to obtain µ and σ which are the pa-
rameters of a factorized Gaussian distribution P (y|ẑ) =
N (µ, diag(σ)) to model y. The quantized latent ŷ =
Q(y − µ) + µ is finally entropy-coded and sent to x̂ =
ga(ŷ) to reconstruct the image x̂. We use the classical
strategy of adding uniform noise to simulate the quanti-
zation operation which makes the operation differentiable.
The channel-wise autoregressive block [2, 3] is designed to
learn the auto-regressive prior which factorizes the distri-
bution of the latent as a product of conditional distributions
incorporating prediction from the causal context of the la-
tents [4, 5, 6].

The generative and the hyper-prior encoder, ga and ha,
are built with the patch merge block and the convolutional
Swin block. The patch merge block contains the Depth-to-
Space operation [10] for down-sampling, a normalization
layer, and a linear layer to project the input to a certain
depth Ci. In ga, the depth Ci of the latent representation
increases as the network gets deeper which allows for get-
ting a more abstract representation of the image. The size
of the latent representation decreases accordingly. In each
stage, we down-sample the input feature by a factor of 2.

The proposed convolutional Swin block is a generalization
of the Swin cell [9]. As shown in Figure 2, we use convolu-
tions instead of position-wise linear projections to project
the K, Q, and V matrices in the multi-head attention block.
This makes the attention module more sensitive to spatial
context. Instead of using hand-crafted positional encoding,
we let the convolution layer capture the positional infor-
mation. In this paper, we use depth-wise separable convo-
lution [14] due to its parameter efficiency. More specifi-
cally, the depth-wise separable convolution first applies a
2D convolution in each feature channel independently. The
outcome is then concatenated and passed through another
convolution layer, such convolution reduces the number of
parameters and computation while increasing representa-
tional efficiency where it deals not just with spatial dimen-
sion but with depth dimension already. It’s important to
note that the proposed block is not limited to convolution
operations. Different forms of convolution [15, 16] are pos-
sible, making the proposed convolutional Swin block par-
ticularly flexible. Compared to the convolutional attention
block in [14], we keep the shift window structure which
allows cross-window connections.

The generative and the hyper-prior decoder, gs and hs,
are built with the patch split block and the convolutional
Swin block. In the patch split block, we reverse the mer-
ging sequence and use Space-to-Depth operation [10] for
up-sampling.

3 Experiment and Analysis
3.1 Experiment configuration
This section presents an assessment of the SwinNPE archi-
tecture and a comparison of its image compression results
against state-of-the-art approaches. The SwinNPE was trai-
ned on the CLIC2020 training set for 3.3 million steps. Du-
ring training, each batch consisted of eight randomly crop-
ped images with a size of 256× 256 pixels.
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FIGURE 1 – Network architecture of our proposed
SwinNPE.

The SwinNPE’s performance was evaluated on the Ko-
dak [17] dataset and we center-cropped all images to mul-



tiples of 256 to avoid padding. We choose the following
loss function to optimize the trade-off between the bit-rate
R and the quality of reconstruction D which corresponds
to the Mean Squared Error (MSE) in RGB color space :

L = D + βR, (1)

with β ∈ {0.003, 0.001, 0.0003, 0.0001}.
The learning rate starts at 10−4 and the hyper-parameters
of the architecture shown in Figure 1 are as follows.
(d1, d2, d3, d4, d5, d6) = (2, 2, 6, 2, 5, 1), (wg, wg) =
(8, 8), (wh, wh) = (4, 4), and (C1, C2, C3, C4, C5, C6) =
(128, 192, 256, 320, 192, 192).
For the autoregressive model, we use the model proposed
in [6] with 10 slices. The kernel size in all convolutional
Swin blocks for depth-wise separable convolution is set
to 3.

(a) (b)

FIGURE 2 – (a) The attention mechanism scheme for multi-
head attention (b) The attention mechanism scheme for
convolutional Swin. DS conv means depthwise separable
convolution.

3.2 Analysis
We compare our proposed SwinNPE with the results of
two transformers-based architectures [10, 8] and some of
the most used CNN-based image compression architec-
tures and standard codecs on the Kodak dataset [17]. The
rate-distortion curves of different methods are shown in Fi-
gure 3. We summarize the number of parameters of the
tested transformer-based architectures in Table 1 where
we also illustrate the Bijonteguard metric [18] using the
SwinT-CHARM as the reference.
From Figure 3, we can clearly see that the SwinNPE out-
performs all of the tested CNN-based architectures in terms
of the bit-rate/distortion tradeoff. It is particularly interes-
ting to notice that our proposed approach obtains almost
the same results as Entroformer [8] (orange dashed line in
Figure 3) with much less model parameters (see Table 1).
Specifically, the saving bit-rate of SwinNPE is 5.46% less
than SwinT-CHARM (optimal saving bit-rate) which is at
the same level as Entroformer with 4.33% more bit-rate sa-
ving compare to SwinT-CHARM. We argue that it is due to
the fact that the convolutional layer in the proposed convo-

lutional Swin block can capture the local contextual in-
formation. With fewer parameters, the proposed SwinNPE
has results comparable to SwinT-CHARM. We emphasize
that our proposed architecture is particularly advantageous
compared to SwinT-based architecture without positional
encoding 1 validating the advantages of combining convo-
lutions and transformers for image compression.

FIGURE 3 – SwinNPE achieves nearly the same results
as Entroformer [8] and SwinT-CHARM [10] that relying
on Positional encoding and better RD performance than
CNNs-based methods Factorized [19], Scale [1], Mean-
Scale [4], Joint hyperprior [4] and standard codecs on the
Kodak image set.

4 Conclusion
In this paper, we propose SwinNPE, a transformer-based
image compression model built with convolutional Swin
blocks without positional encoding. SwinNPE achieves
comparable results to state-of-the-art methods while using
fewer model parameters and outperforming CNN-based ar-
chitectures. The proposed convolutional Swin block allows
for better exploitation of spatial context without the need
for positional encoding, resulting in greater flexibility and
fewer parameters.
For future work, it would be interesting to explore the use
of different convolution operations and sizes in the propo-
sed SwinNPE model. This could allow for more accurate
modeling of complex spatial relationships and patterns,
leading to improved performance in image compression.
Additionally, incorporating the convolution operation
into the patch merge/split module could benefit from
the advantages of CNN. The proposed SwinNPE model
with convolutional Swin blocks provides a promising
direction for the development of efficient and effective
transformer-based models for image compression.

1. The results are shown in the ablation studies in [10].



Network #Param.
(M) Positional encoding Bijonteguard Metric

∆PSNR % ∆rate
SwinT-CHARM [10] 32 Positional Relative Encoding 2D 0 0%

Entroformer [8] 142.7 Positional Relative Encoding 2D + Diamond -0.228 4.33%
SwinNPE (Ours) 27 - -0.311 5.46%

TABLE 1 – Performance comparison using Bijonteguard metric [18] where ∆PSNR measures the average PSNR difference
and % ∆ rate the average rate saving in percent between SwinT-CHARM [10] (selected as the reference network) and another
given network .

Références
[1] Johannes Ballé, David Minnen, Saurabh Singh,

Sung Jin Hwang, et Nick Johnston. Variational image
compression with a scale hyperprior. Dans 6th Inter.
Conf. on Learning Representations (ICLR), 2018.

[2] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao,
et David Zhang. Learning convolutional networks
for content-weighted image compression. Dans 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3214–3223, 2018.

[3] Fabian Mentzer, Eirikur Agustsson, Michael Tschan-
nen, Radu Timofte, et Luc Van Gool. Conditio-
nal probability models for deep image compression.
Dans 2018 IEEE/CVF Conf. on Computer Vision and
Pattern Recognition, pages 4394–4402, 2018.

[4] David Minnen, Johannes Ballé, et George D Toderici.
Joint autoregressive and hierarchical priors for lear-
ned image compression. Dans Advances in Neural
Information Processing Systems, 2018.

[5] Jooyoung Lee, Seunghyun Cho, et Seung-Kwon
Beack. Context-adaptive entropy model for end-to-
end optimized image compression. Dans Internatio-
nal Conference on Learning Representations, 2019.

[6] David Minnen et Saurabh Singh. Channel-wise au-
toregressive entropy models for learned image com-
pression. Dans 2020 IEEE International Conference
on Image Processing (ICIP), pages 3339–3343, 2020.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Ko-
lesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, et
Neil Houlsby. An image is worth 16x16 words :
Transformers for image recognition at scale. Dans
Inter. Conf. on Learning Representations, 2021.

[8] Yichen Qian, Ming Lin, Xiuyu Sun, Tan Zhiyu, et
Rong Jin. Entroformer : A transformer-based entropy
model for learned image compression. Inter. Conf. on
Learning Representations (ICLR), 02 2022.

[9] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang,
S. Lin, et B. Guo. Swin transformer : Hierarchi-
cal vision transformer using shifted windows. Dans
2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 9992–10002, Los Alami-
tos, CA, USA, oct 2021. IEEE Computer Society.

[10] Yinhao Zhu, Yang Yang, et Taco Cohen.
Transformer-based transform coding. Dans In-
ter. Conf. on Learning Representations, 2022.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, et Illia Polosukhin. Attention is all you need.
Dans I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, et R. Garnett, édi-
teurs, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[12] Peter Shaw, Jakob Uszkoreit, et Ashish Vaswani.
Self-attention with relative position representations.
Dans Proceedings of the 2018 Confe. of the North
American Chapter of the Association for Computa-
tional Linguistics : Human Language Technologies,
Volume 2 (Short Papers), pages 464–468. Association
for Computational Linguistics, Juin 2018.

[13] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang,
et Chunhua Shen. Conditional positional encodings
for vision transformers. Dans The Eleventh Inter.
Conf. on Learning Representations, 2023.

[14] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, et Lei Zhang. Cvt : Introdu-
cing convolutions to vision transformers. Dans Pro-
ceedings of the IEEE/CVF Inter. Conf. on Computer
Vision (ICCV), pages 22–31, October 2021.

[15] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, et Yichen Wei. Deformable convolu-
tional networks. Dans Proceedings of the IEEE inter.
conf. on computer vision, pages 764–773, 2017.

[16] Lu Chi, Borui Jiang, et Yadong Mu. Fast fourier
convolution. Advances in Neural Information Pro-
cessing Systems, 33 :4479–4488, 2020.

[17] Kodak. Kodak test images. http://r0k.us/
graphics/kodak/, 1999.

[18] Gisle Bjøntegaard. Calculation of average psnr diffe-
rences between rd-curves. 2001.

[19] Johannes Ballé, Valero Laparra, et Eero P Simoncelli.
End-to-end optimized image compression. 5th Inter.
Conf. on Learning Representations (ICLR), 2017.

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

	Introduction
	Proposed framework
	Experiment and Analysis 
	Experiment configuration
	Analysis

	Conclusion

